Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Brain Behav Immun ; 118: 236-251, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38431238

RESUMEN

Dopamine dysregulation contributes to psychosis and cognitive deficits in schizophrenia that can be modelled in rodents by inducing maternal immune activation (MIA). The selective estrogen receptor (ER) modulator, raloxifene, can improve psychosis and cognition in men and women with schizophrenia. However, few studies have examined how raloxifene may exert its therapeutic effects in mammalian brain in both sexes during young adulthood (age relevant to most prevalent age at diagnosis). Here, we tested the extent to which raloxifene alters dopamine-related behaviours and brain transcripts in young adult rats, both control and MIA-exposed females and males. We found that raloxifene increased amphetamine (AMPH)-induced locomotor activity in female controls, and in contrast, raloxifene reduced AMPH-induced locomotor activity in male MIA offspring. We did not detect overt prepulse inhibition (PPI) deficits in female or male MIA offspring, yet raloxifene enhanced PPI in male MIA offspring. Whereas, raloxifene ameliorated increased startle responsivity in female MIA offspring. In the substantia nigra (SN), we found reduced Drd2s mRNA in raloxifene-treated female offspring with or without MIA, and increased Comt mRNA in placebo-treated male MIA offspring relative to placebo-treated controls. These data demonstrate an underlying dopamine dysregulation in MIA animals that can become more apparent with raloxifene treatment, and may involve selective alterations in dopamine receptor levels and dopamine breakdown processes in the SN. Our findings support sex-specific, differential behavioural responses to ER modulation in MIA compared to control offspring, with beneficial effects of raloxifene treatment on dopamine-related behaviours relevant to schizophrenia found in male MIA offspring only.


Asunto(s)
Efectos Tardíos de la Exposición Prenatal , Clorhidrato de Raloxifeno , Humanos , Adulto Joven , Ratas , Femenino , Masculino , Animales , Adulto , Clorhidrato de Raloxifeno/farmacología , Dopamina/metabolismo , Receptores de Estrógenos , Moduladores Selectivos de los Receptores de Estrógeno/farmacología , Anfetamina/farmacología , ARN Mensajero , Conducta Animal/fisiología , Poli I-C/farmacología , Modelos Animales de Enfermedad , Mamíferos/metabolismo
2.
J Neurosci ; 43(16): 2934-2949, 2023 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-36927572

RESUMEN

This study examined the effect of danger on consolidation of neutral information in two regions of the rat (male and female) medial temporal lobe: the perirhinal cortex (PRh) and basolateral amygdala complex (BLA). The neutral information was the association that forms between an auditory stimulus and a visual stimulus (labeled S2 and S1) across their pairings in sensory preconditioning. We show that, when the sensory preconditioning session is followed by a shocked context exposure, the danger shifts consolidation of the S2-S1 association from the PRh to the BLA; and does so by interacting with processes involved in encoding of the S2-S1 pairings. Specifically, we show that the initial S2-S1 pairing in sensory preconditioning is encoded in the BLA and not the PRh; whereas the later S2-S1 pairings are encoded in the PRh and not the BLA. When the sensory preconditioning session is followed by a context alone exposure, the BLA-dependent trace of the early S2-S1 pairings decays and the PRh-dependent trace of the later S2-S1 pairings is consolidated in memory. However, when the sensory preconditioning session is followed by a shocked context exposure, the PRh-dependent trace of the later S2-S1 pairings is suppressed and the BLA-dependent trace of the initial S2-S1 pairing is consolidated in memory. These findings are discussed with respect to mutually inhibitory interactions between the PRh and BLA, and the way that these regions support memory in other protocols, including recognition memory in people.SIGNIFICANCE STATEMENT The perirhinal cortex (PRh) and basolateral amygdala complex (BLA) process the pairings of neutral auditory and visual stimuli in sensory preconditioning. The involvement of each region in this processing is determined by the novelty/familiarity of the stimuli as well as events that occur immediately after the preconditioning session. Novel stimuli are represented in the BLA; however, as these stimuli are repeatedly presented without consequence, they come to be represented in the PRh. Whether the BLA- or PRh-dependent representation is consolidated in memory depends on what happens next. When nothing of significance occurs, the PRh-dependent representation is consolidated and the BLA-dependent representation decays; but when danger is encountered, the PRh-dependent representation is inhibited and the BLA-dependent representation is selected for consolidation.


Asunto(s)
Complejo Nuclear Basolateral , Miedo , Femenino , Ratas , Masculino , Animales , Condicionamiento Psicológico , Lóbulo Temporal , Reconocimiento en Psicología
3.
Oxf Open Neurosci ; 2: kvad003, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38596235

RESUMEN

Ambiguous relationships between events may be established using interference procedures such as latent inhibition, extinction or counterconditioning. Under these conditions, the retrieval of individual associations between a stimulus and outcome is affected by contextual cues. To examine the roles of the dorsal (prelimbic) and ventral (infralimbic) medial prefrontal cortex in the contextual modulation of such associations, we investigated the context specificity of latent inhibition. Male Lister hooded rats were pre-exposed to two separate stimuli, one in each of two distinct contexts. Both stimuli were then paired with the delivery of mild foot-shock in the same one of these contexts. Finally, the strength of the resultant conditioned emotional response (CER) to each stimulus was assessed in each context. For the sham-operated control rats, the CER was attenuated for each stimulus when it was tested in the context in which it had been pre-exposed. Rats who had received lesions to the infralimbic cortex showed this effect only in the conditioning context, whereas rats with lesions to the prelimbic cortex showed the effect only in the context in which conditioning had not taken place. These findings indicate that infralimbic and prelimbic cortices play distinct, and competing, roles in the contextual modulation of initial and later learning.

4.
Front Behav Neurosci ; 16: 983480, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36439968

RESUMEN

Reward predictive cues can selectively motivate instrumental behaviors that predict the same rewarding outcomes, an effect known as specific Pavlovian-to-instrumental transfer (PIT). This selective effect is thought to be mediated by a representation of the sensory specific properties of an outcome, that has become associated with both the Pavlovian cue and the instrumental response during initial learning. Specific satiety is a common method of outcome devaluation that reduces an outcome's value but might also lead to the habituation of the outcome's sensory properties. Previous research has demonstrated that specific PIT is insensitive to changes in specific outcome value following taste aversion devaluation, as well as general satiety manipulations, and therefore specific satiety should not disrupt specific PIT by reducing outcome value. The present rodent experiments used a specific satiety devaluation procedure immediately prior to a specific PIT test to show that habituation of these outcome specific sensory representations can disrupt its efficacy as a stimulus and abolish the specific PIT effect. Experiment 1 employed a two-lever choice test to show that a non-devalued stimulus supports specific PIT, whereas a devalued stimulus abolished the specific PIT effect. Experiment 2 replicated this procedure while controlling for response competition by using a single-lever test to confirm that a devalued stimulus abolishes the specific PIT effect. These findings demonstrate that specific satiety can disrupt the ability of an outcome specific representation to support specific PIT. Given previous findings that specific PIT is insensitive to changes in outcome value by general satiety and taste aversion devaluation, this suggests that specific satiety devaluation might disrupt the use of sensory specific outcome representations to guide behavior via a mechanism that is independent of the outcome's current value.

5.
Neurobiol Learn Mem ; 193: 107657, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35792325

RESUMEN

Instrumental actions are initially goal-directed but with repeated performance can become habitual. Habitual actions are adaptive, learned behaviours that are automated in order to reduce cognitive load and to allow for efficient interaction with the environment. Goal-directed and habitual actions are mediated by distinct neurocircuits which centre on the dorsal striatum and involve different cortical and limbic inputs. The lateral hypothalamus (LH) has yet to be considered in this neurocircuitry despite its anatomical connections with these neurocircuits and its established role in motivated behaviour. The aim of the current study was to determine whether the LH has a role in the development of habitual actions in rats by knocking down protein expression in the LH with short hairpin RNAs (shRNA). Two shRNAs were utilised, both of which were shown to reduce the expression of two neuropeptides within the LH, orexin and melanin-concentrating hormone, compared to a saline-vehicle control. This was unexpected given that one shRNA was a control vector (i.e, scrambled sequence), and the other shRNA was supposed to selectively target orexin's precursor protein. Given this lack of specificity and that shRNA's are known to be neurotoxic, the current study examined the impact of non-selective dysfunction of the LH on habitual actions. Adult male Long-Evans rats were trained to press a lever for a food outcome and were tested for goal directed and habitual behaviour following devaluation of the food. The shRNA groups displayed goal-directed actions following moderate instrumental training, but did not develop habitual actions following extended training. That is, control rats developed the expected habitual behaviour where lever-response rates were insensitive to outcome value when tested, whilst the shRNA groups reduced rates of responding on the lever under devalued conditioned and hence remained goal-directed. This failure to demonstrate habitual actions was unlikely to be secondary to changes in motivation or arousal as the shRNA groups did not show altered food consumption, body weight, lever response rates, or motor performance on a rota rod or tapered balance beam. However, locomotor activity was reduced in an open field test, consistent with the proposed role of the LH in spontaneous locomotor activity. Therefore, this study implicates the LH in habitual learning, and adds to the emerging evidence that the LH has a role in associative learning processes. This finding has implications for human conditions where there is dysfunction or neurodegeneration in the LH, as well as altered habitual actions, such as in Parkinson's disease and drug addiction.


Asunto(s)
Condicionamiento Operante , Área Hipotalámica Lateral , Adulto , Animales , Condicionamiento Operante/fisiología , Humanos , Masculino , Orexinas , ARN Interferente Pequeño , Ratas , Ratas Long-Evans
6.
J Aging Phys Act ; 30(5): 813-823, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34929661

RESUMEN

Habits play an important role in physical activity (PA) engagement; however, these associations in older people are not well understood. The present study aimed to investigate the relationship between engagement in types of PA and their automaticity in older people, using an observational, cross-sectional design. Current hours engaged in planned exercise (excluding walking), planned walking, and incidental activities and the automaticity of those PA behaviors were measured in 127 community-dwelling Australians aged 65 years and older via an online questionnaire. After controlling for demographic and health factors (age, gender, education level, body mass index, history of falls, and anxiety and depression symptoms), higher automaticity scores were associated with more hours undertaking planned walking and incidental activity but not planned exercise. Although preliminary, these findings indicate that the role of habit in maintaining PA in older people may, therefore, differ depending on the type of activity.


Asunto(s)
Ejercicio Físico , Caminata , Anciano , Australia , Estudios Transversales , Hábitos , Humanos
7.
Front Behav Neurosci ; 15: 740992, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34526883

RESUMEN

Dopamine neurotransmission has been ascribed multiple functions with respect to both motivational and associative processes in reward-based learning, though these have proven difficult to tease apart. In order to better describe the role of dopamine in associative learning, this series of experiments examined the potential of dopamine D1- and D2-receptor antagonism (or combined antagonism) to influence the ability of rats to learn neutral valence stimulus-stimulus associations. Using a sensory preconditioning task, rats were first exposed to pairings of two neutral stimuli (S2-S1). Subsequently, S1 was paired with a mild foot-shock and resulting fear to both S1 (directly conditioned) and S2 (preconditioned) was examined. Initial experiments demonstrated the validity of the procedure in that measures of sensory preconditioning were shown to be contingent on pairings of the two sensory stimuli. Subsequent experiments indicated that systemic administration of dopamine D1- or D2-receptor antagonists attenuated learning when administered prior to S2-S1 pairings. However, the administration of a more generic D1R/D2R antagonist was without effect. These effects remained constant regardless of the affective valence of the conditioning environment and did not differ between male and female rats. The results are discussed in the context of recent suggestions that dopaminergic systems encode more than a simple reward prediction error, and provide potential avenues for future investigation.

8.
Cereb Cortex Commun ; 2(1): tgab010, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34296155

RESUMEN

The orbitofrontal cortex (OFC) is a critical structure in the flexible control of value-based behaviors. OFC dysfunction is typically only detected when task or environmental contingencies change, against a backdrop of apparently intact initial acquisition and behavior. While intact acquisition following OFC lesions in simple Pavlovian cue-outcome conditioning is often predicted by models of OFC function, this predicted null effect has not been thoroughly investigated. Here, we test the effects of lesions and temporary muscimol inactivation of the rodent lateral OFC on the acquisition of a simple single cue-outcome relationship. Surprisingly, pretraining lesions significantly enhanced acquisition after overtraining, whereas post-training lesions and inactivation significantly impaired acquisition. This impaired acquisition to the cue reflects a disruption of behavioral control and not learning since the cue could also act as an effective blocking stimulus in an associative blocking procedure. These findings suggest that even simple cue-outcome representations acquired in the absence of OFC function are impoverished. Therefore, while OFC function is often associated with flexible behavioral control in complex environments, it is also involved in very simple Pavlovian acquisition where complex cue-outcome relationships are irrelevant to task performance.

9.
Behav Neurosci ; 135(2): 226-244, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34060876

RESUMEN

Our understanding of orbitofrontal cortex (OFC) function has progressed remarkably over the past decades in part due to theoretical advances in associative and reinforcement learning theories. These theoretical accounts of OFC function have implicated the region in progressively more psychologically refined processes from the value and sensory-specific properties of expected outcomes to the representation and inference over latent state representations in cognitive maps of task space. While these accounts have been successful at modeling many of the effects of causal manipulation of OFC function in both rodents and primates, recent findings suggest that further refinement of our current models are still required. Here, we briefly review how our understanding of OFC function has developed to understand two cardinal deficits following OFC dysfunction: Reversal learning and outcome devaluation. We then consider recent findings that OFC dysfunction also significantly affects initial acquisition learning, often assumed to be intact. To account for these findings, we consider a possible role for the OFC in the arbitration and exploration between model-free (MF) and model-based (MB) learning systems, offline updating of MB representations. While the function of the OFC as a whole is still likely to be integral to the formation and use of a cognitive map of task space, these refinements suggest a way in which distinct orbital subregions, such as the rodent lateral OFC, might contribute to this overall function. (PsycInfo Database Record (c) 2021 APA, all rights reserved).


Asunto(s)
Corteza Prefrontal , Roedores , Animales , Refuerzo en Psicología , Aprendizaje Inverso
10.
J Neurosci ; 40(33): 6409-6427, 2020 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-32669355

RESUMEN

The mesolimbic dopamine system comprises distinct compartments supporting different functions in learning and motivation. Less well understood is how complex addiction-related behaviors emerge from activity patterns across these compartments. Here we show how different forms of relapse to alcohol-seeking in male rats are assembled from activity across the VTA and the nucleus accumbens. First, we used chemogenetic approaches to show a causal role for VTA TH neurons in two forms of relapse to alcohol-seeking: renewal (context-induced reinstatement) and reacquisition. Then, using gCaMP fiber photometry of VTA TH neurons, we identified medial and lateral VTA TH neuron activity profiles during self-administration, renewal, and reacquisition. Next, we used optogenetic inhibition of VTA TH neurons to show distinct causal roles for VTA subregions in distinct forms of relapse. We then used dLight fiber photometry to measure dopamine binding across the ventral striatum (medial accumbens shell, accumbens core, lateral accumbens shell) and showed complex and heterogeneous profiles of dopamine binding during self-administration and relapse. Finally, we used representational similarity analysis to identify mesolimbic dopamine signatures of self-administration, extinction, and relapse. Our results show that signatures of relapse can be identified from heterogeneous activity profiles across the mesolimbic dopamine system and that these signatures are unique for different forms of relapse.SIGNIFICANCE STATEMENT It is axiomatic that the actions of dopamine are critical to drug addiction. Yet how relapse to drug-seeking is assembled from activity across the mesolimbic dopamine system is poorly understood. Here we show how relapse to alcohol-seeking relates to activity in specific VTA and accumbens compartments, how these change for different forms of relapse, and how relapse-associated activity relates to activity during self-administration and extinction. We report the mesolimbic dopamine activity signatures for relapse and show that these signatures are unique for different forms of relapse.


Asunto(s)
Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/fisiología , Comportamiento de Búsqueda de Drogas/fisiología , Etanol/administración & dosificación , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/fisiología , Área Tegmental Ventral/efectos de los fármacos , Área Tegmental Ventral/fisiología , Animales , Conducta Adictiva/fisiopatología , Condicionamiento Operante/efectos de los fármacos , Condicionamiento Operante/fisiología , Dopamina/metabolismo , Masculino , Potenciales de la Membrana , Optogenética , Ratas Long-Evans , Recurrencia , Tirosina 3-Monooxigenasa/metabolismo
11.
Cereb Cortex Commun ; 1(1): tgaa039, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-34296108

RESUMEN

Bidirectionally aberrant medial orbitofrontal cortical (mOFC) activity has been consistently linked with compulsive disorders and related behaviors. Although rodent studies have established a causal link between mOFC excitation and compulsive-like actions, no such link has been made with mOFC inhibition. Here, we use excitotoxic lesions of mOFC to investigate its role in sensitivity to punishment; a core characteristic of many compulsive disorders. In our first experiment, we demonstrated that mOFC lesions prevented rats from learning to avoid a lever that was punished with a stimulus that coterminated with footshock. Our second experiment demonstrated that retrieval of punishment learning is also somewhat mOFC-dependent, as lesions prevented the extended retrieval of punishment contingencies relative to shams. In contrast, mOFC lesions did not prevent rats from reacquiring the ability to avoid a punished lever when it was learned prior to lesions being administered. In both experiments, Pavlovian fear conditioning to the stimulus was intact for all animals. Together, these results reveal that the mOFC regulates punishment learning and retrieval in a manner that is separate from any role in Pavlovian fear conditioning. These results imply that aberrant mOFC activity may contribute to the punishment insensitivity that is observed across multiple compulsive disorders.

12.
J Neurosci ; 40(4): 880-893, 2020 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-31818977

RESUMEN

The ventral pallidum (VP) is a key node in the neural circuits controlling relapse to drug seeking. How this role relates to different VP cell types and their projections is poorly understood. Using male rats, we show how different forms of relapse to alcohol-seeking are assembled from VP cell types and their projections to lateral hypothalamus (LH) and ventral tegmental area (VTA). Using RNAScope in situ hybridization to characterize activity of different VP cell types during relapse to alcohol-seeking provoked by renewal (context-induced reinstatement), we found that VP Gad1 and parvalbumin (PV), but not vGlut2, neurons show relapse-associated changes in c-Fos expression. Next, we used retrograde tracing, chemogenetic, and electrophysiological approaches to study the roles of VPGad1 and VPPV neurons in relapse. We show that VPGad1 neurons contribute to contextual control over relapse (renewal), but not to relapse during reacquisition, via projections to LH, where they converge with ventral striatal inputs onto LHGad1 neurons. This convergence of striatopallidal inputs at the level of individual LHGad1 neurons may be critical to balancing propensity for relapse versus abstinence. In contrast, VPPV neurons contribute to relapse during both renewal and reacquisition via projections to VTA. These findings identify a double dissociation in the roles for different VP cell types and their projections in relapse. VPGad1 neurons control relapse during renewal via projections to LH. VPPV neurons control relapse during both renewal and reacquisition via projections to VTA. Targeting these different pathways may provide tailored interventions for different forms of relapse.SIGNIFICANCE STATEMENT Relapse to drug or reward seeking after a period of extinction or abstinence remains a key impediment to successful treatment. The ventral pallidum, located in the ventral basal ganglia, has long been recognized as an obligatory node in a 'final common pathway' for relapse. Yet how this role relates to the considerable VP cellular and circuit heterogeneity is not well understood. We studied the cellular and circuit architecture for VP in relapse control. We show that different forms of relapse have complementary VP cellular and circuit architectures, raising the possibility that targeting these different neural architectures may provide tailored interventions for different forms of relapse.


Asunto(s)
Prosencéfalo Basal/fisiología , Comportamiento de Búsqueda de Drogas/fisiología , Área Hipotalámica Lateral/fisiología , Neuronas/fisiología , Área Tegmental Ventral/fisiología , Animales , Condicionamiento Operante/efectos de los fármacos , Condicionamiento Operante/fisiología , Etanol/administración & dosificación , Masculino , Vías Nerviosas/fisiología , Ratas , Ratas Sprague-Dawley , Recurrencia , Recompensa
13.
Elife ; 82019 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-31769756

RESUMEN

Our behaviour is shaped by its consequences - we seek rewards and avoid harm. It has been reported that individuals vary markedly in their avoidance of detrimental consequences, that is in their sensitivity to punishment. The underpinnings of this variability are poorly understood; they may be driven by differences in aversion sensitivity, motivation for reward, and/or instrumental control. We examined these hypotheses by applying several analysis strategies to the behaviour of rats (n = 48; 18 female) trained in a conditioned punishment task that permitted concurrent assessment of punishment, reward-seeking, and Pavlovian fear. We show that punishment insensitivity is a unique phenotype, unrelated to differences in reward-seeking and Pavlovian fear, and due to a failure of instrumental control. Subjects insensitive to punishment are afraid of aversive events, they are simply unable to change their behaviour to avoid them.


Asunto(s)
Conducta Animal , Miedo , Castigo , Recompensa , Animales , Condicionamiento Psicológico , Femenino , Masculino , Motivación , Ratas Long-Evans
14.
Brain Sci ; 9(3)2019 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-30813649

RESUMEN

Recent work suggests complementary roles of the prelimbic and infralimbic regions of the rat medial prefrontal cortex in cognitive control processes, with the prelimbic cortex implicated in top-down modulation of associations and the infralimbic cortex playing a role in the inhibition of inappropriate responses. Following selective lesions made to prelimbic or infralimbic regions (or control sham-surgery) rats received simultaneous training on Pavlovian feature negative (A+, XA-) and feature positive (B-, YB+) discriminations designed to lead to hierarchical occasion-setting control by the features (X, Y) over their respective targets (A, B). Evidence for hierarchical control was assessed in a transfer test in which features and targets were swapped (YA, XB). All groups were able to learn the feature negative and feature positive discriminations. Whilst sham-lesioned animals showed no transfer of control by features to novel targets (a hallmark of hierarchical control), rats with lesions of prelimbic or infralimbic regions showed evidence of transfer from the positive feature (Y) to the negative target (A), and from the negative feature (X) to the positive target (B; although this only achieved significance in infralimbic-lesioned animals). These data indicate that damage to either of these regions disrupts hierarchical occasion-setting control, extending our knowledge of their role in cognitive control to encompass flexible behaviours dictated by discrete cues.

15.
Psychopharmacology (Berl) ; 236(6): 1853-1862, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30683942

RESUMEN

RATIONALE: Previous work has identified that different forms of Pavlovian conditioned approach, sign-tracking and goal-tracking, are governed by distinct neurochemical mechanisms when compared in animals predisposed to learning one form vs. the other. OBJECTIVES: The present study aimed to investigate whether these are also neurochemically distinct processes in a population of animals capable of developing either response when this is manipulated via the use of distinct conditioned stimuli (CS). METHODS: Rats were trained on one of two Pavlovian conditioning procedures in which the CS was either a lever, which elicits sign-tracking, or an auditory click, which elicits goal-tracking. The differential involvement of dopamine D1- and D2-receptors (D1R; D2R) in the acquisition of approach types was investigated via systemic administration of antagonists selective to one or both receptor subtypes during Pavlovian training. RESULTS: Results indicate that dopaminergic signalling is important for the acquisition of both sign-tracking and goal-tracking responses. However, whilst development of sign-tracking to a lever depends on activity at both D1R and D2R, development of goal-tracking in response to a click was shown to depend only on activity at D1R. CONCLUSIONS: We suggest that the importance of D1R activity in both sign- and goal-tracking acquisition reflects a general role in learning Pavlovian associations, which aligns with data implicating dopamine in prediction error processes. In contrast, the selective involvement of D2R activity in sign-tracking acquisition may reflect its importance in motivational processes such as incentive salience attribution.


Asunto(s)
Condicionamiento Clásico/fisiología , Antagonistas de Dopamina/farmacología , Objetivos , Motivación/fisiología , Receptores de Dopamina D1/fisiología , Receptores de Dopamina D2/fisiología , Animales , Dopamina/fisiología , Masculino , Motivación/efectos de los fármacos , Ratas , Ratas Wistar , Receptores de Dopamina D1/antagonistas & inhibidores
16.
Annu Rev Psychol ; 70: 53-76, 2019 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-30260745

RESUMEN

Making decisions in environments with few choice options is easy. We select the action that results in the most valued outcome. Making decisions in more complex environments, where the same action can produce different outcomes in different conditions, is much harder. In such circumstances, we propose that accurate action selection relies on top-down control from the prelimbic and orbitofrontal cortices over striatal activity through distinct thalamostriatal circuits. We suggest that the prelimbic cortex exerts direct influence over medium spiny neurons in the dorsomedial striatum to represent the state space relevant to the current environment. Conversely, the orbitofrontal cortex is argued to track a subject's position within that state space, likely through modulation of cholinergic interneurons.


Asunto(s)
Corteza Cerebral/fisiología , Cuerpo Estriado/fisiología , Toma de Decisiones/fisiología , Función Ejecutiva/fisiología , Modelos Psicológicos , Animales , Humanos
17.
Psychol Rev ; 125(5): 822-843, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30299142

RESUMEN

Theories of functioning in the medial prefrontal cortex are distinct across appetitively and aversively motivated procedures. In the appetitive domain, it is argued that the medial prefrontal cortex is important for producing adaptive behavior when circumstances change. This view advocates a role for this region in using higher-order information to bias performance appropriate to that circumstance. Conversely, literature born out of aversive studies has led to the theory that the prelimbic region of the medial prefrontal cortex is necessary for the expression of conditioned fear, whereas the infralimbic region is necessary for a decrease in responding following extinction. Here, the argument is that these regions are primed to increase or decrease fear responses and that this tendency is gated by subcortical inputs. However, we believe the data from aversive studies can be explained by a supraordinate role for the medial prefrontal cortex in behavioral flexibility, in line with the appetitive literature. Using a dichotomy between the voluntary control of behavior and the execution of well-trained responses, we attempt to reconcile these theories. We argue that the prelimbic region exerts voluntary control over behavior via top-down modulation of stimulus-response pathways according to task demands, contextual cues, and how well a stimulus predicts an outcome. Conversely, the infralimbic region promotes responding based on the strength of stimulus-response pathways determined by experience with reinforced contingencies. This system resolves the tension between executing voluntary actions sensitive to recent changes in contingencies, and responses that reflect the animal's experience across the long run. (PsycINFO Database Record (c) 2018 APA, all rights reserved).


Asunto(s)
Atención/fisiología , Conducta Animal/fisiología , Condicionamiento Clásico/fisiología , Corteza Prefrontal/fisiología , Animales , Ratas
18.
Neurobiol Learn Mem ; 156: 53-59, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30359728

RESUMEN

People and animals sometimes associate events that never occurred together. These false memories can have disastrous consequences, yet little is known about the conditions under which they form. In four experiments, we investigated how rats learn to fear a context in which they have never experienced danger (i.e., how they form a false context fear memory). In each experiment, rats were pre-exposed to a context on day 1, shocked in a similar-but-different context on day 2, and tested in the pre-exposed or explicitly-conditioned context on day 3. The results revealed that: (1) the true memory of the explicitly-conditioned context and false memory of the pre-exposed context develop simultaneously and independently; and (2) the conditions of pre-exposure on day 1 and time of shock exposure on day 2 interact to determine the strength of the false memory. These findings are anticipated by a recent computational model, the Bayesian Context Fear Algorithm/Automaton (BACON; Krasne, Cushman, & Fanselow, 2015). They are discussed in relation to this model and more general theories of context learning.


Asunto(s)
Conducta Animal/fisiología , Condicionamiento Clásico/fisiología , Miedo/fisiología , Recuerdo Mental/fisiología , Animales , Teorema de Bayes , Masculino , Modelos Biológicos , Ratas , Ratas Sprague-Dawley
19.
Elife ; 72018 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-30044220

RESUMEN

The orbitofrontal cortex (OFC) is critical for updating reward-directed behaviours flexibly when outcomes are devalued or when task contingencies are reversed. Failure to update behaviour in outcome devaluation and reversal learning procedures are considered canonical deficits following OFC lesions in non-human primates and rodents. We examined the generality of these findings in rodents using lesions of the rodent lateral OFC (LO) in instrumental action-outcome and Pavlovian cue-outcome devaluation procedures. LO lesions disrupted outcome devaluation in Pavlovian but not instrumental procedures. Furthermore, although both anterior and posterior LO lesions disrupted Pavlovian outcome devaluation, only posterior LO lesions were found to disrupt reversal learning. Posterior but not anterior LO lesions were also found to disrupt the attribution of motivational value to Pavlovian cues in sign-tracking. These novel dissociable task- and subregion-specific effects suggest a way to reconcile contradictory findings between rodent and non-human primate OFC research.


Asunto(s)
Corteza Prefrontal/fisiología , Aprendizaje Inverso/fisiología , Animales , Condicionamiento Psicológico/fisiología , Masculino , Actividad Motora/fisiología , Ratas Long-Evans , Gusto
20.
Neuron ; 98(3): 512-520.e6, 2018 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-29656870

RESUMEN

Contexts exert bi-directional control over relapse to drug seeking. Contexts associated with drug self-administration promote relapse, whereas contexts associated with the absence of self-administration protect against relapse. The nucleus accumbens shell (AcbSh) is a key brain region determining these roles of context. However, the specific cell types, and projections, by which AcbSh serves these dual roles are unknown. Here, we show that contextual control over relapse and abstinence is embedded within distinct output circuits of dopamine 1 receptor (Drd1) expressing AcbSh neurons. We report anatomical and functional segregation of Drd1 AcbSh output pathways during context-induced reinstatement and extinction of alcohol seeking. The AcbSh→ventral tegmental area (VTA) pathway promotes relapse via projections to VTA Gad1 neurons. The AcbSh→lateral hypothalamus (LH) pathway promotes extinction via projections to LH Gad1 neurons. Targeting these opposing AcbSh circuit contributions may reduce propensity to relapse to, and promote abstinence from, drug use.


Asunto(s)
Consumo de Bebidas Alcohólicas/metabolismo , Condicionamiento Operante/fisiología , Comportamiento de Búsqueda de Drogas/fisiología , Núcleo Accumbens/metabolismo , Consumo de Bebidas Alcohólicas/prevención & control , Consumo de Bebidas Alcohólicas/psicología , Animales , Condicionamiento Operante/efectos de los fármacos , Comportamiento de Búsqueda de Drogas/efectos de los fármacos , Etanol/administración & dosificación , Masculino , Vías Nerviosas/química , Vías Nerviosas/fisiología , Núcleo Accumbens/química , Núcleo Accumbens/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Ratas Transgénicas , Recurrencia , Autoadministración
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...